Received 23 May 2005 Accepted 31 May 2005

Online 10 June 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jun Wan,^a Chun-Li Li,^a Xue-Mei Li,^a Ying Li,^a Shu-Sheng Zhang,^a Hong Xu^b and Ping-Kai Ouyang^b

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ^bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.038 wR factor = 0.092 Data-to-parameter ratio = 7.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(3-Nitrophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one

In the title compound, $C_{11}H_{10}N_4O_3$, the substituted phenyl ring and the triazole ring make a dihedral angle of 59.7 (2)°. The molecules are linked into zigzag chains by intermolecular $C-H\cdots O$ hydrogen bonds. These chains are further connected through $C-H\cdots N$ hydrogen bonds to build up a three-dimensional network.

Comment

A molecular view of the title compound, (I), is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and compare well with those reported for related compounds (Wan, Li, Li & Zhang, 2005; Wan, Li, Li, Zhang *et al.*, 2005). The molecule of (I) is non-planar, with the substituted phenyl ring and the triazole ring making a dihedral angle of 59.7 (2)°.

In the crystal structure, the molecules of (I) are linked into zigzag chains by $C-H\cdots O$ hydrogen bonds (Fig. 2, Table 1). Further $C-H\cdots N$ hydrogen bonds connect these chains to build up a three-dimensional network which stabilizes the packing.

Experimental

To a solution of 3-(dimethylamino)-1-(3-nitrophenyl)propan-1-one hydrochloride (18 g, 0.07 mol) in water (20 ml) was added triazole (5.5 g, 0.08 mol). The mixture was heated under reflux for 5 h,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

A view of compound (I), with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.

yielding a copious precipitate. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of an ethyl acetate–petroleum ether (1:1 (ν/ν) solution over a period of two weeks.

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.6 \mbox{--} 22.3^{\circ} \\ \mu = 0.11 \ \mbox{mm}^{-1} \end{array}$

T = 293 (2) K

Cell parameters from 1871

Thick plate, colourless

 $0.26 \times 0.24 \times 0.13 \text{ mm}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0426P)^{2} + 0.1225P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.14 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$

Crystal data

 $C_{11}H_{10}N_4O_3$ $M_r = 246.23$ Orthorhombic, $Pca2_1$ a = 26.334 (8) Å b = 4.5962 (13) Å c = 9.570 (3) Å V = 1158.4 (6) Å³ Z = 4 $D_x = 1.412 \text{ Mg m}^{-3}$

Data collection

Siemens SMART 1000 CCD area-	1215 independent reflections
detector diffractometer	1093 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.023$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -31 \rightarrow 32$
$T_{\min} = 0.973, T_{\max} = 0.986$	$k = -5 \rightarrow 5$
5794 measured reflections	$l = -11 \rightarrow 11$
Refinement	

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.038$	
$wR(F^2) = 0.092$	
S = 1.14	
1215 reflections	
163 parameters	
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

3.400 (4)	172
3.481 (5)	175
3.449 (4)	169
	3.481(5) 3.449(4) $-v + 1, z + \frac{1}{2}$

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The Friedel reflections were merged before the final refinement because of the absence of any significant anomalous scattering effects.

Figure 2

A view down the *b* axis, showing the $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds (dashed lines) leading to a three-dimensional network. H atoms not involved in hydrogen-bond interactions have been omitted for clarity.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP3* (Farrugia, 1997), *PLATON* (Spek, 2003) and *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON*.

This project was supported by the Programme for New Century Excellent Talents in Universities (grant No. NCET-04–0649) and by the Project of the Educational Administration of Shandong Province (grant No. J04B12).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wan, J., Li, C.-L., Li, X.-M. & Zhang, S.-S. (2005). Acta Cryst. E61, 0307–0308.
- Wan, J., Li, C.-L., Li, X.-M., Zhang, S.-S., Xu, H. & Ouyang, P. K. (2005). Acta Cryst. E61, 01641–01642.